terça-feira, 12 de janeiro de 2016

Exercícios de Geometria Descritiva quase impossíveis - Figuras planas


1 - Determine as projecções do triângulo equilátero [ABC] sendo A(-1;0;1), B(3;0;3) e C um ponto do plano horizontal de projecção com afastamento positivo.


2 - Determine as projecções do triângulo equilátero [PQR] com 7 cm de lado, sendo P(2;2;0), Q(0;0) e tem abcissa negativa e R tem cota positiva e afastamento nulo.

3 - Determine as projecções e a verdadeira grandeza do triângulo cujos vértices são A(6;4;2), B(4;1;4) e C(2;2;1).
(Exercício de baixa dificuldade e com várias propostas de resolução)




4 – Determine as projecções de um triângulo equilátero com 5 cm de lado contido num plano vertical. Os vértices são A(-1;3;4), B e C que têm ambos afastamento nulo e abcissas positivas.


5 - A(8;8;0), B(6;0;6) e C(3;0;3) são os vértices do triângulo [ABC]. Determine a verdadeira grandeza da figura.

6 -  A(3;0;6) e B(4;3;0) são dois vértices do quadrado [ABCD] situado no 1º diedro. O vértice C tem cota nula. Determine as projecções do quadrado.

7 - A(-2;5;2) e B(2;0;10) são os extremos de um dos lados do quadrado [ABCD]. O vértice C tem afastamento positivo e pertence ao plano horizontal de projecção. Determine as projecções da figura.

8 - A(0;5;0) é um dos vértices do triângulo [ABC] localizado no 1º diedro. O lado [BC] é horizontal e mede 7cm. B tem abcissa e afastamento nulos. C tem abcissa negativa. Determine as projecções do triângulo.

9 - A(5;-3;-3), B(3;-1;-6) e C(8;-3;-7) são os vértices de um triângulo situado no plano γ. Determine os traços do plano γ e a verdadeira grandeza do triângulo.

10 - Determine a verdadeira grandeza do triângulo cujos vértices são os pontos M(0;-5;5), N(3;-2;2) e O(4;-7;7).

11 - Determine a verdadeira grandeza do triângulo [JKL] sendo J(-1;-6;6), K(-5;2;-2) e L(5;-2;2).

Sem comentários: